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A new method is presented for the calculation of point mobilities at generic
multi-plate/beam junctions. Such a junction is considered to consist of an arbitrary
number of semi-in"nite plates coupled together through a beam, which may also be
omitted. Plates and beams are assumed to obey Mindlin and Timoshenko theories
respectively. The calculation is based on a numerical wavenumber integration
technique. A specially adapted numerical integration technique is used to reduce
the amount of numerical calculations to be done. The method is applied to
a number of example structures to test its results and to illustrate its application.
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1. INTRODUCTION

The structural dynamic characteristics of source and receiver points are of great
importance for both the prediction of power input into a structure and the
prediction of structure-borne sound transmission across point junctions in complex
built-up structures. The use of point mobilities is an appropriate way to describe
these characteristics. In many cases it is impractical, too expensive or even
impossible to measure the point mobilities needed for an analysis. Therefore, it may
be necessary to calculate or to assess them.

Much work has been done in "nding analytical formulations for point mobilities.
Cremer and Heckl [1] gave a comprehensive summary of formulas for a number of
simple structures, such as beams, plates and shells. Many authors, among them
Dyer [2], Eichler [3], Beckmann [4], Heckl [5], Buhlert [6], Ljunggren [7] and
Leung and Pinnigton [8], considered various point mobilities of plates in more or
less detail. In contrast, very few results are published for point mobilities of more
complicated or built-up structures; Lamb [9] and Goyder and White [10] studied
beam sti!ened plates, while Peterson [11] addressed the point mobility at an
intersection of two perpendicular plates. In practice, structures are not likely to be
of simple type or to "t one of those rare cases, where formulations for complicated
structures are available.

In this situation, one possible way to compute point mobilities is to employ the
conventional "nite element method (FEM). The structure is then modelled with
a number of elements, which are required to be considerably smaller than a typical
022-460X/00/020411#20 $35.00/0 ( 2000 Academic Press



Figure 1. Examples of multi-plate/beam junctions.
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wavelength. Thus, as the wavelength becomes smaller with increasing frequency,
the required number of elements and the computational e!ort are growing. This
fact restricts the use of this method to low frequencies, where the typical wavelength
is not too small compared to the overall dimensions of the structure.

This paper describes a technique to compute point mobilities, that may be
applied to a wide range of structures. The amount of numerical computations to
be done does not depend on frequency and so, unlike the FEM, the technique can
be used also in the high-frequency range. All relevant force and moment mobilities
of a point on the connection line of the edges of an arbitrary number of semi-in"nite
plates are estimated. A sti!ening beam along this line may also be taken into
account. Figure 1 shows some examples of such junctions.

2. POINT MOBILITIES

In general, a point mobility> relates a complex transverse or angular velocity (v
or w) to a force F or moment M acting on the same point or small area, where the
velocity is measured. As the velocity may vary within the small area S

0
, some

averaging is required to de"ne a &&point''mobility. This averaging will be done here
on the assumption of equality of the complex power estimated from the velocity
and that estimated from the point mobility [12]:
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The point mobility can be obtained as
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The point mobilities >
wF
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and >
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that are relating an angular velocity to
a force or a transverse or angular velocity to a moment, respectively, may be
de"ned on a similar basis.
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If all three dimensions are taken into account, a 6]6 point mobility matrix
Y

P
has to be considered. It is given by
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As it may be deduced from the reciprocity principle, the matrix Y
P

is symmetric.
Consequently, not all the 36, but only 21 elements of the matrix have to be
calculated. While in general all elements of the matrix may be non-zero, in many
cases practically studied many of them are zero. This is also the case for the
considered point on the plate junction and will be discussed later in detail.

3. THEORY

3.1. ARRANGEMENT OF THE PLATES AND THE BEAM AT THE JUNCTION

Figure 2(a) shows a schematic of an example junction of two plates and a beam,
which illustrates the type of junction considered here. In general, there may be any
number of plates and of course another type of beam. The beam may also be
omitted. In global co-ordinates, the x-axis matches the connection line and
coincides with the shear axis of the beam. The y-and the z-axis are parallel to the
principal axes of the beam cross-section. Therefore, the local co-ordinate system of
Figure 2. Schematic of plate/beam junction with global co-ordinate system (a) and local co-
ordinates for beam (b) and plate (c).
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the beam, which is shown in Figure 2(b), does not di!er from the global co-ordinate
system. The velocities and their corresponding forces and moments are related
to the shear centre S in case of v

y
, v

z
and w

x
, while for v

x
, w

y
and w

z
they are related

to the centre of gravity C"(y
C
, z

C
) of the beam cross-section.

The position of each of the semi-in"nite plates is given by an angle u and
a possible o!set (y

0
, z

0
) of the connected plate edge. A local co-ordinate system, the

x-axis of which coincides with the connected edge, is used for the plates (see
Figure 2(c)). The dynamic behaviour of the edge of plate n is fully determined by
four independent velocities, v

n
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)T D
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say, and their corresponding

forces per unit edge length, F@
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say, both of which are given

in local co-ordinates.
The velocities of the plate edges must be compatible to the beam velocities (given

in global co-ordinates):
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The matrix KT
n

for conversion from global to local co-ordinates is given by
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The sum of all forces per unit length on the connection line must equate to the
external forces per unit length F@

e
applied along the connection line. In global

co-ordinates and with the beam forces F@
K

this reads
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e
. (6)

Equations (4) and (6) describe the behaviour of the connection in terms of velocities
and forces, respectively. For a full description a link between velocities and
forces (and moments) is required, which is provided by the plate edge impedance
matrix and the beam impedance matrix. In what follows these matrices will be
derived.

3.2. PLATE EDGE IMPEDANCE

A thick plate with linear isotropic behaviour is assumed. The equations of
motion for the plate allow for the e!ects of bending shear and rotatory inertia.
Reassembled after reference [1] for reason of the di!erent co-ordinate system and
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with a time dependence of e +ut, they have the form
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where o, E, G and k are the mass density, Young's modulus, shear modulus and
Poisson ratio respectively. With the plate thickness h and the shear coe$cient i the
quantities K@"Ghi, B@"Eh3/12(1!k2), HA"oh3/12 and mA"oh are given. As
it may readily be seen, the "rst two equations are independent from the others.
They determine the in-plane behaviour of the plate. Equations (9)}(11) govern the
out-of-plane motion. The elimination of w

x
and w

z
gives
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which is the di!erential equation for bending waves in a thick plate.
With an e+kxxe+kzz dependency of all motions assumed, any propagating or

evanescent wave must have a wavenumber determined by k2"k2
x
#k2

z
. Taking

these considerations, equations (7) and (8) yield the wavenumbers for in-plane
(longitudinal and transverse) waves
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L
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while equation (12) gives the wavenumbers for bending waves
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The roots of k2
B1

are real and therefore related to a propagating bending wave, while
that of k2

B2
are imaginary within the frequency range where equation (12) is valid

and consequently related to an evanescent wave.
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A plane wave of any type with an amplitude v
0

propagating away from the plate
edge at z"0 has a wavenumber k

x
, which together with the appropriate

wavenumber k for the wave type determines the direction in which the wave is
heading. In other words, the wavenumber k

z
is given, which must be negative real

or positive imaginary for propagating and evanescent waves respectively:

k
z
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x
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Equations (7)} (11), (13) and (14) may be used to derive a relationship between the
velocity at the plate edge and the amplitude of all possible wave types:
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The details of the matrix C are given in Appendix A. Applying Hooke's law and
integrating the relevant stresses over the cross-section of the plate edge, the
following equations for the forces per unit edge length can be achieved, which must
be evaluated at z"0:
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With these equations and equations (7)}(11), (13) and (14), after a considerable
amount of algebra, it is possible to relate the wave amplitudes to the forces per unit
edge length. This relationship may be written in the form
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with details of the matrix Z@
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given in Appendix A. Both C and Z@
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depend on k
x
.

Together they yield the plate edge impedance matrix (per unit length)
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It is much more practical to compute the matrix in this form, rather than on a per
element basis, as it can easily be done in the case of Kirchho! plate theory.
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3.3. BEAM IMPEDANCE

If a beam is present at the junction, it will oppose motion to any force
distribution along the connection line. The equations governing this motion are
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where S
B

and J
Sx

are the cross-section and the torsional moment about the shear
axis, I

P
is the polar moment of inertia and I

y
and I

z
are the second moments of

inertia about the y- and the z-axis, respectively. Shear deformation (shear
coe$cients i

y
, i

z
) and rotatory inertia are taken into account for bending; unlike in

reference [13], warping is neglected. With a e +kxx dependence of all motions, an
impedance matrix per unit length for the beam can be obtained, which depends on
k
x
:
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(details are given in Appendix B).

3.4. CALCULATION OF THE POINT MOBILITIES

Applying the inverse Fourier transform the ith velocity component on the
connection line may be estimated from the corresponding wavenumber spectrum:
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Equations (4), (6), (22) and (29) provide a relationship between the velocity on the
connection and external forces acting:
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may be Fourier-transformed to the corresponding quantities in
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Thus, the velocity components may be written as
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If the stress and therefore the force per unit length are evenly distributed within
the excitation area S

0
(with the bounds (a,!a), see Figure 3(b)) and if
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Figure 3. Plate/beam junction with excitation area (a) and stress distribution along the connection
line for an acting force (b) and an acting moment (c).



CALCULATION OF POINT MOBILITIES 419
and the corresponding wavenumber spectrum is

Fx @
ej

(k
x
)"

1

J2n P
=

~=

F@
ej

(x)e +kxx dx"
F
ej

J2n

sin k
x
a

k
x
a

. (36)

At this point, the de"nition in equation (2) may be used to calculate the elements of
the point mobility matrix:
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If the expression to integrate is an even function of k
x

it may be su$cient to
integrate within the bounds (0,R) only, but if the function is odd the integral
evaluates to zero. Equation (37) is simpli"ed to give
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It is emphasized that the above calculation may only be used for mobilities that
relate one of the forces F
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or the moment M
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For the sake of simplicity, a linear stress distribution within the excitation area is
assumed. Other possible forms of stress distributions do not lead to remarkably
di!erent results, unless the frequency is outside the limits of the underlying plate
and beam theory, where e!ects such as volumetric near "elds [14] have to be taken
into account. With
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(see Figure 3(c)), leading to the wavenumber spectra
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Under the same conditions as for equation (38) the point mobilities are
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The remaining elements of the point mobility matrix relate the moments M
y
and

M
z
to v
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x
and F
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z
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, respectively. Using suitable

equations similar to equations (2) and (39) for all these elements it is required to
integrate an odd function within symmetric bounds; consequently, they all evaluate
to zero. This result is also provided by the following consideration: M

y
and M

z
are

acting about axes which are lying in the symmetry plane of the plate junction and
crossing the centre of gravity C of the beam cross-section. If it is recognized that
there is no resulting translation of C at x"0, the velocity v

x
, which is related to C,

must be zero. Further, the local distribution of the resulting velocities v
y
, v

z
or w

x
,

all of which are related to the shear centre S, must be an odd function of x, having
the value 0 for x"0. Similar arguments apply in the case of F

x
. Thus, all point

mobilities relate to either F
x

or v
x

do vanish.

4. NUMERICAL IMPLEMENTATION

A summary of the above considerations shows, for the point mobility matrix,
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only 10 elements that must be estimated either from equations (38) or (43).
The integrals to be solved for this end must be computed numerically because the

mobilities>
Kij

(k
x
) are computed by using a (numerical) matrix inversion as shown

in equation (32). However, this is not always possible since the integrand may have
singularities on the real axis. The position of these singularities cannot be estimated
exactly, so it is impracticable to calculate the value of the integral using residues.
A small arti"cial damping introduced for the wavenumber to render it complex [1]
and to shift the possible singularities o! the real axis enables the numerical
computation of the integral. Nevertheless, such a computation requires a great
number of function values to be estimated and is therefore not very e$cient. In
what follows an alternative way is proposed.

The >
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), the function values of

which may be computed with much less computational e!ort. Since>
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vanishes if k
x
PR, the interpolating rational function must do so and consequently

must have the form
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where the degree p of the polynomial in the numerator is lower than the degree
q of the polynomial in the denominator. The function >

Kij
(k

x
) has to be evaluated

only (p#q#1) times to compute all the coe$cients a
m

and b
n

rather than
several hundred times for the numerical integration. The higher the degree of
the polynomials is, the better is theoretically the approximation of the integrals.
However, in practice, the values of >

Kij
(k

x
) used to estimate the coe$cients

can only be estimated with limited precision and so p and q chosen too high
will cause numerical errors. An illustration of this behaviour is shown in the
next section. For the sake of brevity, further details of the interpolation
algorithm as well as the numerical integration will not be considered
here. The interested reader is referred to the literature (e.g. references
[15,16]).

5. EXAMPLE APPLICATIONS

5.1. INFINITE PLATE

An in"nite plate may also be seen as a pseudo-junction of two semi-in"nite plates
with a subtended angle of 1803. Thus, the point mobilities on the junction line
between these plates are equivalent to those of an in"nite plate. Since analytical
results are available for all point mobilities, the case of an in"nite plate is a suitable
probe of the numerical algorithm.

Only slightly di!erent results for the point force mobility for an in-plane force
acting on a rigid circular indenter can be found in references [4, 7, 8]. Reference [7]
also provides the point moment mobility for a moment acting around an axis
perpendicular to the plate. The classical out-of-plane point force and point moment
mobility are calculated in reference [6] and [2], respectively. In both references
[2, 6] Mindlin plate theory is employed. For a radius a of the indenter the
mobilities are
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denoting the Bessel and Neumann functions of "rst order, respectively)
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The remaining elements of the point mobility matrix are zero.
Table 1 shows the results for an in"nite steel plate (E"2)1 GPa,

o"7800 kg/m3, k"0)3, h"2 mm). The parameter a was chosen to be 5 mm. The
numerical values for the real parts agree remarkably well with those obtained from
equations (46)}(49). A likely reason for the di!erences in the imaginary parts is the
di!erent shape of the indenter. In equations (46)} (49) a circular indenter with
radius a is assumed, while a linear indenter with length 2a is considered in the case
of the numerically estimated point mobility of the junction.

As already mentioned, the quality of the results estimated numerically relies on
the degree of the interpolating functions. Table 2 shows this dependency for the
case of the in"nite plate. Interpolating polynomials of high degree result in a more
accurate estimation of the mobility than those of lower degrees. With interpolating
functions of a very high degree (p"11, q"12 in this case), the result becomes
erroneous due to numerical errors (A machine precision of 16 digits was used).
Although p"10, q"11 give the best results in the case of the in"nite plate
considered here, interpolating functions of the same high degree cause already large
numerical errors due to relatively imprecise estimation of the values of >

Kij
(k

x
) for
TABLE 1

Point mobilities for an in,nite steel plate (see text for parameters) in m/Ns and
1/m Ns respectively

100 Hz 1 kHz 10 kHz

>
P11

(46) 6)56]10~7#3)24]10~6 j 6)56]10~6#2)28]10~5 j 6)56]10~5#1)32]10~4 j
Num 6)56]10~7#2)08]10~6 j 6)56]10~6#2)07]10~5 j 6)56]10~5#1)51]10~4 j

>
P22

(47) 2)55]10~3!5)97]10~6 j 2)54]10~3!4)49]10~5 j 2)45]10~3!3)00]10~4 j
Num. 2)53]10~3!1)88]10~4 j 2)51]10~3!2)30]10~4 j 2)38]10~3!4)50]10~4 j

>
P33

(46) 6)56]10~7#3)24]10~6 j 6)56]10~6#2)28]10~5 j 6)56]10~5#1)32]10~4 j
Num. 6)48]10~7#1)82]10~6 j 6)45]10~6#1)80]10~5 j 6)44]10~5#1)23]10~4 j

>
P44

(48) 0)255#0)891 j 2)55#5)17 j 25)5#14)0 j
Num. 0)255#1)34 j 2)54#9)76 j 24)2#60)4 j

>
P55

(49) 9)27]10~9#0)0124 j 9)27]10~6#0)124 j 9)27]10~3#1)24 j
Num. 1)42]10~8#1)99]10~5 j 1)40]10~5#0)0195 j 0)0140#3)61 j

>
P66

(48) 0)255#0)891 j 2)55#5)17 j 25)5#14)0 j
Num. 0)250#1)10 j 2)49#7)35 j 24)0#36.4 j



TABLE 2

Dependency of the results for the point mobility>
P22

for an in,nite steel plate from the
degree p, q of the interpolating polynomials ( f"100 Hz; see text for plate

parameters)

p q >
P22

(m/Ns) Remarks

1 2 2)205]10~3!3)709]10~2 j
2 3 2)390]10~3!2)066]10~2 j
3 4 2)414]10~3!1)888]10~4 j
4 5 2)468]10~3!2)053]10~4 j
5 6 2)488]10~3!2)076]10~4 j
6 7 2)512]10~3!1)875]10~4 j
7 8 2)525]10~3!1)878]10~4 j This p, q were used for computations
8 9 2)535]10~3!1)878]10~4 j
9 10 2)543]10~3!1)875]10~4 j

10 11 2)550]10~3!1)876]10~4 j Best agreement of the real part with equation
(47)

11 12 2)565]10~3!1)875]10~4 j Small error due to computational precision
12 13 7)565]10~1!23)88 Large error*result not meaningful
13 14 No result*division by zero error
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other con"gurations. This depends mainly on the condition of the inverse of
Y

k
from equation (32). Low values of p and q lead to completely inaccurate results

for most con"gurations. Therefore, interpolating functions of degrees p"7, q"8,
which have shown to be the best possible compromise, were used for all the
examples in this and in the next section.

The in#uence of a on the out-of-plane point force mobility is shown in Figure 4.
Both the real and the imaginary parts of the mobility are shown for di!erent values
of a. The numerical and the analytical results from equation (47) are normalized by
the plate point mobility according to simple bending theory (>

0
"1/8JB@mA) [1].

The real part results are in very good agreement for all values of a. The small
di!erence which remains even at low frequencies would vanish if interpolating
functions of higher degree were used (see Table 2). Despite a common trend it is
obvious that there is an o!set between the analytical and the numerical results for
the imaginary part. The reason for this is related to the di!erent shape of the
indenter already mentioned above. Nevertheless, for both analytical and numerical
results in the low-frequency range the mobility does nearly not depend on
frequency or on a. Moreover, the larger the value of a is, the stronger is the
variation of both real and imaginary parts with increasing frequency.

5.2. BEAM-STIFFENED PLATE AND T-PLATE

While the simple case of an in"nite plate was selected mainly for benchmark
purposes, more complicated built-up structures are included here to yield results
from the numerical algorithm that cannot (or only in part) be calculated
analytically. The "rst type of structure, a beam-sti!ened plate, was already subject



Figure 4. Real (top) and imaginary (bottom) parts of the mobility, normalized with respect to
>
0
"1/8JB@mA. } } }, a"2 mm; } ) } a"5 mm; 2, a"10 mm; thin lines: equation (47); thick lines;

numerical results.
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to point mobility calculations. Lamb [9] calculated the out-of-plane point force
mobility, while Goyder and White [10] added two point moment mobilities. No
results are available for the remaining three point mobilities >

P11
, >

P33
and >

P55
.

In terms of a junction, a beam-sti!ened plate is equivalent to one beam and two
semi-in"nite plates with a subtended angle of 1803. The second structure which is
studied here adds a perpendicular plate to the beam-sti!ened plate. Consequently,
it consists of three semi-in"nite plates and one beam and will be referred to as
T-plate with sti!ening beam. For this T-plate with sti!ening beam no analytical



Figure 5. Point force mobilities:**, beam-sti!ened plate; } ) }, T-plate; 2, 1 mm steel plate; } } }
10 mm]10 mm steel beam.
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Figure 6. Point moment mobilities (same parameters as in Figure 5).
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approximation for point mobilities is available except from that calculated by
Petersson [11], which is not applicable in the special case selected here, where
relatively thin plates are used and an additional beam is present at the junction.

For both structures all plates were chosen to be 1 mm thick and the beams were
set to have a quadratic cross-section of 10 mm]10 mm. All structural members
were taken to be made of steel. The parameter a was chosen to be 10 mm, while as
well as in the "rst example interpolating functions of degree p"7, q"8 were
shown to be best suited for the numerical calculation. Figure 5 shows the results for
all point force mobilities for both structures, while Figure 6 shows the point
moment mobilities. Along with the real and imaginary parts of the mobilities from
the numerical calculations the analytical results for the point mobilities of a 1 mm
steel plate, taken from equations (46)} (49), and for a 10 mm]10 mm steel beam
(see Appendix C) are plotted. The main intention for this was to show that plate and
beam formulas give good approximations for the mobilities of this built-up
structures in some cases, while in other cases such approximations are rather poor.
It may be noticed that the real parts of the mobilities of built-up structures are not
very di!erent from those of the member with the lowest mobility. For >

P11
, >

P33
,

>
P44

and >
P55

the plate governs the behaviour. The real parts of >
P22

and >
P66

of
the beam-sti!ened plate and the T-plate are controlled by the beam and the
perpendicular plate respectively. The imaginary parts for the built-up structures are
di!erent from those of beam and plate in most cases. It seems that no general rule
may be established here.

While in most cases the numerical precision of the results is better than 3 digits,
in some cases only a precision less than 2 digits was achieved in calculation. These
less-precise results had also to be used for plotting the curves in Figures 5 and 6, so
it is due to a technical but not a physical reason that some curves (most notable
>
P11

of the T-plate) appear to be not smooth.
Even though not shown here the numerical results for the beam-sti!ened plate

were also compared to the results from references [9, 10]. The agreement is good
except for >

P44
, where an obvious misprint in reference [10] leads to notable

di!erences.

6. CONCLUDING REMARKS

This work has been concerned with how to compute point mobilities of
complicated structures, in particular generic multi-plate/beam junctions. It has
been shown that an algorithm which is relatively straightforward may be used to
calculate the line impedance of the junction from the plate edge impedances and the
beam impedance. Together with the wavenumber spectrum of a point force acting
this line impedance yields the velocity wavenumber spectrum, which is normalized
and integrated to get the point mobility. This integration has to be done
numerically. A specially adapted integration technique was introduced to reduce
the required amount of numerical calculation.

The foremost theoretical imitation of the technique is that the indenter is
assumed to be line-shaped. This a!ects mainly the values of the imaginary part of
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the mobility. The e!ect of the numerical errors arising during computation requires
careful consideration as it may result in imprecise or even totally meaningless
results.

The successful calculation of the point mobilities of an in"nite homogenous plate
shown in the work suggests that the method's results are reliable. Demonstrating its
potentials, the method was also employed to more complicated structures.

Throughout the present analysis only homogenous plates and the sti!ening
beam were considered as structural members of the junction. The analysis may
readily be extended to include other types of structural members, if their edge
impedance or dynamic sti!ness can be estimated (e.g. cylindrical shells [17]).
Furthermore, the method allows in principle the inclusion of material damping and
of elastic interlayers between the plates and the beam.
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APPENDIX A: MATRICES FROM SECTION 3.2

C"A
k
x

k
T

k
2T
k
T

0 0

0 0 !1 !1

k
zL

k
L

!

k
x

k
T

0 0

0 0 !

jk
zB1

k2
B0

h
1

!

jk
zB2

k2
B0

h
2

B ,

Z@
FM

"

A
Ehk

zL
k
x

uk
T
(1#k)

Eh(k2
zT
!k2

x
)

2uk
T
(1#k)

0 0

0 0
mAk

zB1
(k2

zB1
#(2!k)k2

x
)

uh
1

mAk
zB2

(k2
zB2

#(2!k)k2
x
)

uh
2

!

Eh(k2
zL
#kk2

x
)

uk
L
(1!k2)

Ehk
zT

k
x

uk
T
(1#k)

0 0

0 0
jmA(k2

zB1
#kk2

x
)

uh
1

jmA(k2
zB2

#kk2
x
)

uh
2

B
k
zB1@2

"jJk2
x
!k2

B1@2
, k

zL
"jJk2

x
!k2

L
, k

zT
"jJk2

x
!k2

T
,

h
1@2

"k2
SikB1@2!k2

L
k2
Sk
#k2

B0
.

APPENDIX B: BEAM IMPEDANCE MATRIX

The non-zero elements of Z@
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APPENDIX C: POINT MOBILITY OF AN INFINITE BEAM

Point mobilities of an in"nite beam [1] (Timoshenko bending theory):

>
P11

"

1

2SJEo
, >

P22
"

u2o/G#k
Bz1

k
Bz2

2um@(k
Bz1

#k
Bz2

)
, >

P33
"

u2o/G#k
By1

k
By2

2um@(k
By1

#k
By2

)
,

>
P44

"

1

2J
Sx

JGo
, >

P55
"

(1#ju)
4k

By1
EI

y

, >
P66

"

(1#ju)
4k

By1
EI

z

.

k
By1@2

and k
Bz1@2

are the wavenumbers for free bending waves on the beam and can
be estimated like those for the plate (equation (14)).
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